If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+24w-40=0
a = 1; b = 24; c = -40;
Δ = b2-4ac
Δ = 242-4·1·(-40)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{46}}{2*1}=\frac{-24-4\sqrt{46}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{46}}{2*1}=\frac{-24+4\sqrt{46}}{2} $
| 6m-83=187 | | p+6p-12=-43 | | 20-3x+9-2=11x-1 | | y-28+110=180 | | 6x/2+4x/15=16 | | 11x+28-6x=-14-2x | | $5(3x+2)-2=-2(1-7x)$ | | 2=w–1 | | y7+9y-6=34 | | 3x-14+(-18+3x)+4+2x=180 | | a^+9a-2;a=-2 | | 2x+62=90 | | u0+0=9 | | 4(x+6)+2=4x-3+1 | | 5m+4m-6=9m-6 | | 9=10p | | 15=2v | | x+1/2x+x+1/3x=350 | | E^6x+3=7 | | 7(v+5)=77 | | 3x-14+-18x+3x+4+2x=1800 | | 203=111-y | | 17x+20x=16x-17x | | 2(x-6)+9x=44+4x | | 5{2p-4(p+5)}=25 | | 65-n+78*87=634 | | 13x-2(6x-4=72 | | x.x=2 | | 2x/(x^2+4)=0 | | n-75657566=9 | | 2x+15=-5x-17 | | 2x-150x+3000=0 |